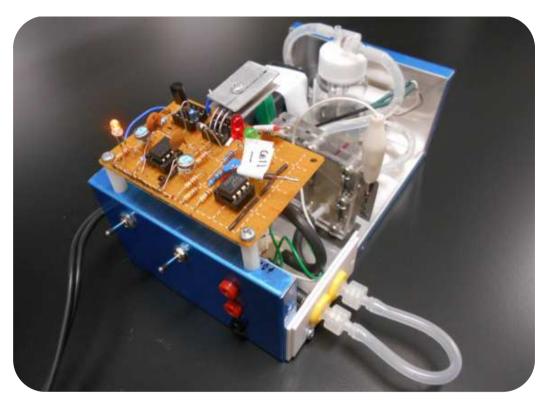
2022年度JST-研究成果展開事業 大学発新産業創出プログラム 大学推進型 **DEMODAY**


燃料電池式 酸素透過量測定セル

燃料電池の原理(電解法)を用いた、 バリアフィルムの酸素および燃料分子の 透過・拡散係数の評価装置

金藤 敬一 大阪工業大学 工学部 生命工学科 客員教授

電解式脱酸素ポンプ S1

AGENDA

1. コンセプト・事業概要

2. 研究開発の内容

3. 市場規模・ターゲット顧客

社会背景

- 食品、医薬品、電子デバイスなどは日常の生活に密着した商品
- それらの腐敗・劣化と流通のグローバル化に対応して、長期保存はSDGsに不可欠
- そのために包装資材の高分子バリアフィルムは、今後一段と需要が増す
- 一方、環境問題から生分解性を付与、更なる軽量・薄膜化、多層化、高機能化など、
- 顧客ニーズに対応した製品開発が求められる

事業概要

- 高分子フィルムのガスバリア特性の評価は品質確保のため、 特に酸素ガスなどの透過率の評価は必須
- 新たな原理により測定が迅速・簡便で安価な装置を開発した
- 本装置を世界市場に販売していくことを目指す

OITK-S2

脱酸素ポンプ S2

AGENDA

1. コンセプト・事業概要

2. 研究開発の内容

3. 市場規模・ターゲット顧客

2. 燃料電池による酸素透過係数の測定原理

- 燃料電池は燃料と酸素を反応させて電気エネルギーに変換

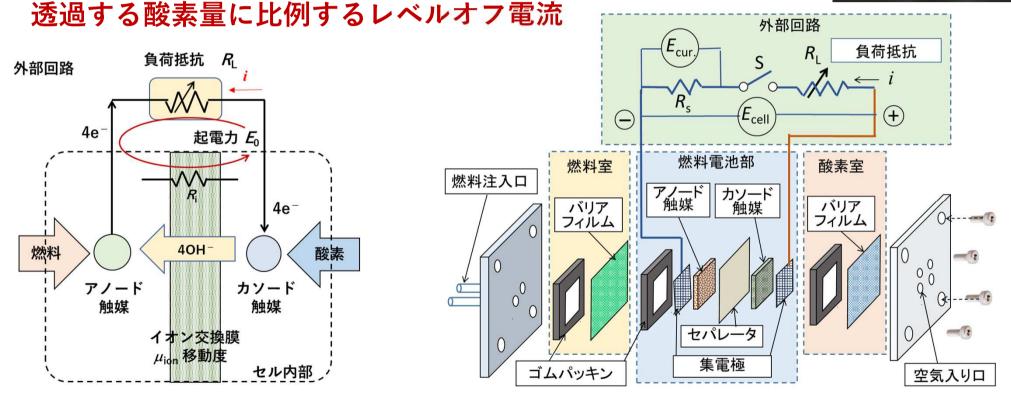


図1 燃料電池システム

図2 バリアフィルムの酸素・燃料の透過量測定用セルの構造

燃料電池による酸素透過率の測定例

$lacksymbol{lack}$ レベルオフ電流 (i_∞) から 酸素透過係数(P)が得られる

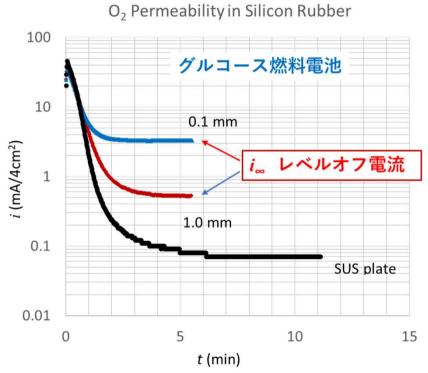


図3 電流の時間応答 約10分で測定

P =	$i_{\infty}V_md$		
	4sFp		

 $V_{\rm m}$: ガスのモル体積、F: ファラディー定数、 \underline{d} : フィルム厚、S: フィルム面積、 \underline{p} : 圧力差

	ポリマー フィルム	厚さ d(μm)	<i>i</i> _∞ (μAcm ⁻²)	酸素透過係数 (cm³(STP) cm/cm²ˈs·cmHg)			
	7172			本測定	文献值		
_	高密度PE	13	24	1.1×10 ⁻¹⁰	0.4~2.5×10 ⁻¹⁰ [1]		
	低密度PE	42	34	5.4×10 ⁻¹⁰	6.9×10^{-10} [1]		
	セロファン PT	59	100	2.3×10 ⁻⁹	-		
	水膜	110	71	2.8×10 ⁻⁹	$0.68 \sim 1.0 \times 10^{-9}$ [2]		
	透析膜	43	2,000	3.3 × 10 ⁻⁸	-		
	シリコンゴム	500	200	3.8×10 ⁻⁸	$1 \sim 6 \times 10^{-8} \qquad [3]$		

- [1] S.M. Allen, M. Fujii, V. Stannett, H.B. Hopfenberg, J.L. Williams, *J. Membrane Science*, Vol.2 (1977) pp.153-163.
- [2] D.M. Himmelblau, *Chemical Reviews*, Vol.64 (1964) pp.527-550.
- [3] http://junkosha.co.jp/technical/tec8.html.

従来の酸素・ガス透過係数の評価方法

● 酸素など各種ガス:

ISO15105 (JISK7126)

• 水: ISO15106(JISK7129)

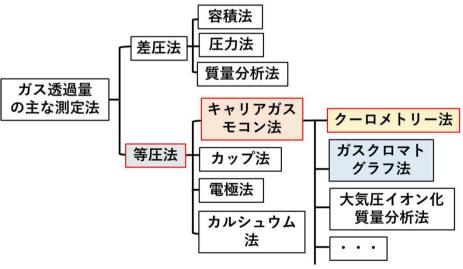


図4. ガス透過率測定法の分類

● ガスセンサーが装置の心臓部

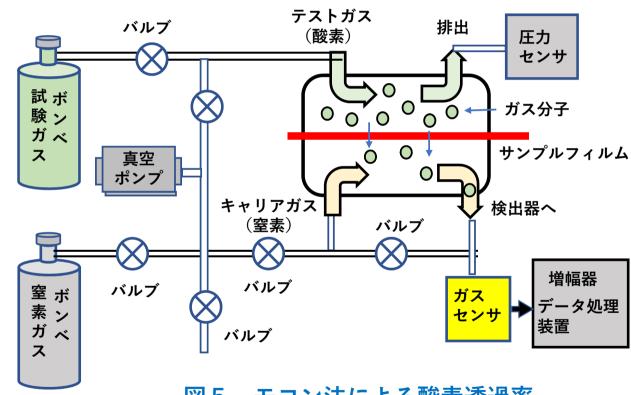
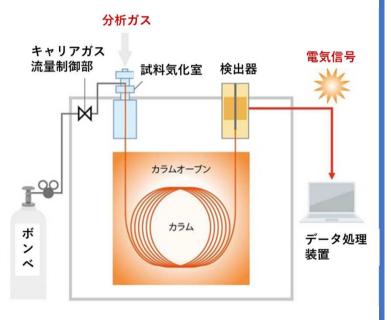
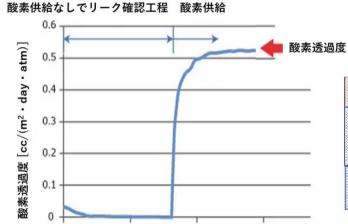



図5. モコン法による酸素透過率 測定装置の全体図

既存のガス検知方法

各種ガスの検知



(a) ガスクロマトグラフィー

図6. ガス検知方法の主な例

酸素ガスの検知 等圧法 (モコン法)

> サンプルサイズ 100mm×100mm (厚さ最大2mm) 規格 JIS K 7126-2「プラスチックフィルム」

100

150

時間 [min]

400 °C Heater $0_2 + 4e^- \rightarrow 20^2$ Barrier **∜**0₂

(出展: MOCON AMETEK HP)

 $20^2 \stackrel{-}{\longrightarrow} 0_2 + 4e^-$

測定時間 約2時間

50

(b) Coulometric Oxygen Analyzer (クーロメトリー酸素分析器)

5尺 住ベリサーチ株式会社

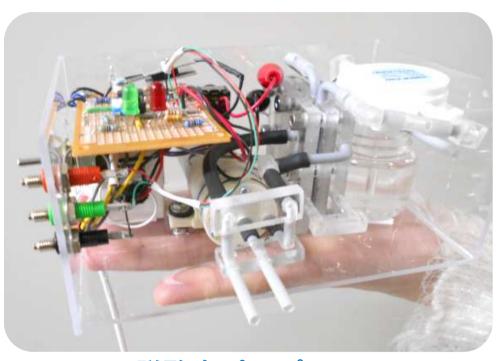
知財戦略

【保有知財】

特願2021-204089 「リークディテクター・及び気密部材のリークの検出方法」

【関係論文】

- ✓"燃料電池によるバイオ分子の拡散と酸素の透過係数の評価" 大工大紀要、Vol.65, No.1 (2020) pp.1-9. http://id.nii.ac.jp/1360/00000481/
- √"電解式O₂ポンプによるバリアフィルムの酸素透過率測定" 大工大紀要、Vol.67, No.2 (2022) pp.79-84. http://id.nii.ac.jp/1360/0000646/


【応用展開】

O2ポンプとして脱酸素・水中溶存酸素の除去、酸素濃縮などの応用展開が可能

商品化への課題

- (A-1) 透過率・拡散係数の測定範囲(感度)を高める
- (A-2) 対象のガス種を多様化する 酸素および酸化性ガスの塩素、臭素、NOx、硫化物など 水素以外に、還元性燃料を触媒するアノード材料の開発
- (B-1) 測定時間の短縮
- (B-2) 装置の長寿命化
- (C-1) 顧客に対応するプロトタイプを作製する

脱酸素ポンプ W3

AGENDA

1. コンセプト・事業概要

2. 研究開発成果

3. 市場規模・ターゲット顧客

3. 市場規模・ターゲット顧客

【用途】

研究:バリアフィルム及び素材の特性評価

製造:フィルム製造工程、包装済み商品での

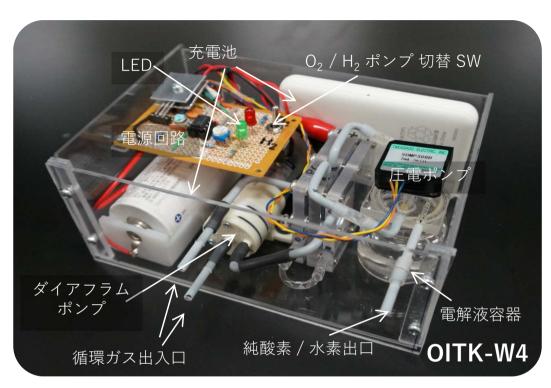
品質管理

【市場規模】

フィルム透過率測定器市場規模

国内500億円/年の市場

(市場ヒアリングより)


バリアフィルムによる食品の保存

【ターゲット顧客】

- ▶ 素材メーカ、フィルムユーザー(食品、医薬品、デバイス関連他)
- > フィルム装置メーカー、食品産業、
- ディスプレー・太陽電池パネルメーカー、理化学機器メーカー 12

競合ベンチマーク

主要メーカー(sensing method)	測定方法	長所	短所	概算価格
 ・GTR 社、日本(ガスクロ) ・イリノイ社、米(ガスクロ) ・Mocon社、米 (赤外センサ、C.O.A) ・Labthink、中国 (Coulometric Oxygen analyzer) 	差圧法	高感度	高価格	5百万円
	等圧法	標準測定 方法	測定時間	
開発中の本方法 (電気化学的手法)	等圧法	構造が シンプル 短時間測定	ガス種が 限定	百万円 以下

ポータブル型脱酸素ポンプ W4

AGENDA

1. コンセプト・事業概要

2. 研究開発成果

3. 市場規模・ターゲット顧客

4. 今後の計画

社長候補

CTO候補

募集中

大阪工業大学 工学部 生命工学科 金藤 敬一客員教授

外部サポートメンバー

株式会社IBS 早川剛一代表取締役

株式会社IBS 神谷翔太 研究員

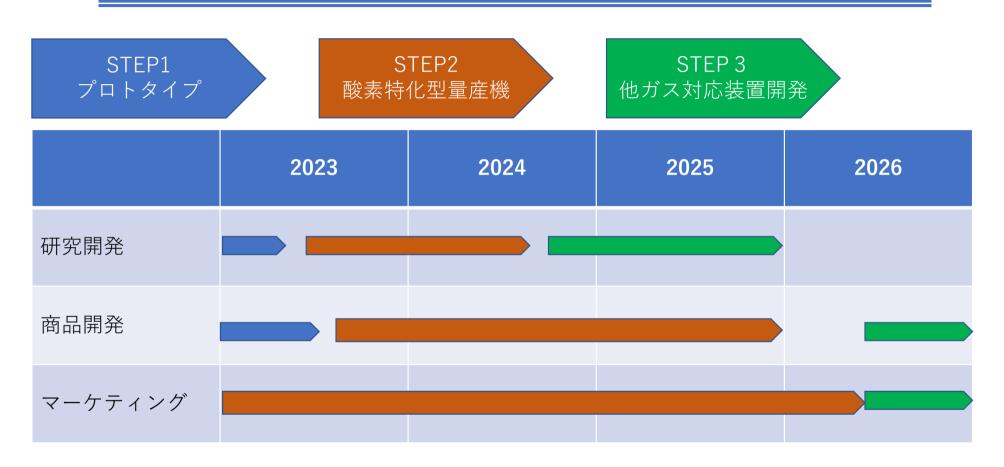
大学サポートメンバー

大阪工業大学 工学部 生命工学科 宇戸 貞仁 教授 **共同研究者**

大阪工業大学 研究支援・社会連携センター 矢澤さん URA

事業プロモーター

大阪工業大学 研究支援・社会連携センター 五島 章好 URA アドバイザー (起業・事業化)

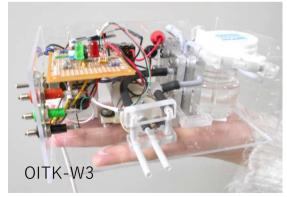


今後の活動計画(1)

- 今後の方向性
- ▶ 学内ベンチャーを立ち上げ、量産化に向けたパートナー企業を決定(2023年度中目標)。
- ➤ 短時間測定(従来比1/10以下), 低価格(従来比1/5以下)の酸素ガスに特化した測定装置プロトタイプを2023年度中に開発。
- ▶パートナー企業と測定器の量産化実施。2025年度に販売事業を開始
- ▶ 酸素以外(塩素等他酸化ガス)に対応した多ガス測定器の開発継続
- ▶ 将来的には海外への事業拡大を目指す。

今後の活動計画(2)

2025年中の事業開始を目指し、引続き開発、市場調査を継続



ご清聴ありがとうございました

